Abstract

The structural identification of small nickel clusters with ethanol can help to understand fundamental steps for heterogenous catalysis. We investigate the rows [Nix (EtOH)1 ]+ with x=1-4, and [Ni2 (EtOH)y ]+ with y=1-3 via IR photodissociation spectroscopy in a molecular beam experiment. Analyzing the CH- and OH-stretching frequencies and comparing these experimental results with density functional theory (DFT) calculations on the PW91/6-311+G(d,p) level leads to the identification of intact motifs for all clusters and hints for C-O cleavage of the ethanol in two particular cases. Furthermore, we analyze the effects of frequency shifts with the increasing clusters sizes using the results of natural bond orbitals (NBO) analyses and an energy decomposition method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call