Abstract

Herein, we report the development of an online process monitoring system for vacuum-assisted resin transfer molding (VARTM) process using large area graphene coated in-situ fabric sensor. Besides imparting excellent mechanical properties to the final composites, these sensors provide critical information during the composite processing including detecting defects and evaluating processing parameters. The obtained information can be used to create a digital passport of the manufacturing phase to develop a cost-effective production technique and fabricate high-quality composites. The fabric sensor was produced using a scalable dip-coating process by coating 1-, 3- or 5-layers of thermally reduced graphene oxide (rGO) onto glass fabric surface according to the number of dips of the fabrics into GO solution. The electrical resistances from all electrode pairs were simultaneously and continuously recorded during distinct stages of the VARTM process to determine the relative conductance. During the vacuum cycle, the range of relative conductance increased with the number of coated rGO layers, with the 5-layer rGO-coated sensor showing the highest conductance range of 16.9 %. Additionally, it was observed that the 5-layer coated sensor showed a consistent decrease in conductance during the infusion phase due to the fluid flow pressure dominating the resin electrical conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.