Abstract

Peptidoglycan (PGN) recognition proteins (PGRPs) are important pattern recognition receptors of the innate immune system. A number of PGRP splicing variants produced by alternative splicing of PGRP genes have been reported. However, several important aspects of interactions between PGRP splice variants and their ligands are still unclear. In the present study, three dimensional models of salamander PGRP1 (adPGRP1) and its splice variant (adPGRP1a) were constructed, and their key amino acids involved in interacting with PGNs were analyzed. The results revealed that adPGRP1a has a typical PGRPs structure containing five β-sheets and four α-helices, while adPGRP1 contained five β-sheets and only one α-helix due to the lack of 51 amino acids at its C-terminus. Molecular docking revealed that van der Waals and Coulombic interactions contributed to interactions in the protein-ligand complex. Further binding energy of adPGRP-PGNs computed by the MM-PBSA method revealed that adPGRP1a and adPGRP1 might selectively bind to different PGNs; the former might selectively bind Dap-type PGNs and the latter both types of PGNs. In addition, the binding energy of each residue of adPGRP1a and adPGRP1 was also calculated, revealing that residues involved in the interaction of protein-ligand complexes were different in adPGRP1a and adPGRP1. These results provided a first insight into the potential basis for interaction between PGRPs generated by alternative splicing and PGN derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.