Abstract
Layered hybrid halometallates represent a promising class of multifunctional materials, yet with many open challenges regarding the interaction between building blocks. In this work, we present a synthetic and analytical methodology for the efficient synthesis and structural analysis of a series of novel tetrahalocuprate(II) hybrids based on small alkylammonium cations. Observed robustness in geometrical motifs provided a platform for crystal structure determination, even from the complex laboratory powder diffraction data. The slight differences in inorganic layer geometry and severe differences in organic bilayer packing are quantified using well-established descriptors for these materials, and dependences of geometric parameters on anion and cation choice are accounted for. Temperature dependence of structural parameters for one of the tetrachlorocuprate hybrids that was chosen as a model unveils a possible geometrical origin of thermochromism in these materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.