Abstract

Cryptochromes (CRYs) are blue-light receptors in plants that harbor FAD as a cofactor and regulate various physiological responses. Photoactivated CRYs undergo oligomerization, which increases the binding affinity to downstream signaling partners. Despite decades of research on the activation of CRYs, little is known about how they are inactivated. Binding of blue-light inhibitors of cryptochromes (BICs) to CRY2 suppresses its photoactivation, but the underlying mechanism remains unknown. Here, we report crystal structures of CRY2N (CRY2 PHR domain) and the BIC2-CRY2N complex with resolutions of 2.7 and 2.5 Å, respectively. In the BIC2-CRY2N complex, BIC2 exhibits an extremely extended structure that sinuously winds around CRY2N. In this way, BIC2 not only restrains the transfer of electrons and protons from CRY2 to FAD during photoreduction but also interacts with the CRY2 oligomer to return it to the monomer form. Uncovering the mechanism of CRY2 inactivation lays a solid foundation for the investigation of cryptochrome protein function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.