Abstract

Little is known about rift kinematics and strain distribution during the earliest phase of extension due to the deep burial of the pre-rift and earliest rift structures beneath younger, rift-related deposits. Yet, this exact phase of basin development ultimately sets the stage for the location of continental plate divergence and breakup. Here, we investigate the structure and strain distribution in the multiphase Late Paleozoic-Cenozoic magma-poor Rukwa Rift, East Africa during the earliest phase of extension. We utilize aeromagnetic data that image the Precambrian Chisi Shear Zone (CSZ) and bounding terranes, and interpretations of 2-D seismic reflection data to show that, during the earliest rift phase (Permo-Triassic ‘Karoo’): 1) the rift was defined by the Lupa border fault, which exploited colinear basement terrane boundaries, and a prominent intra-basinal fault cluster (329° ± 9.6) that trends parallel to and whose location was controlled by the CSZ (326°); 2) extensional strain in the NW section of the rift was accommodated by both the intra-basinal fault cluster and the border fault, where the intra-basinal faulting account for up to 64% of extension; in the SE where the CSZ is absent, strain is primarily focused on the Lupa Fault. Here, the early-rift strain is thus, not accommodated only by the border fault as suggested by existing magma-poor early-rift models; instead, strain focuses relatively quickly on a large border fault and intra-basinal fault clusters that follow pre-existing intra-basement structures; 3) two styles of early-rift strain localization are evident, in which strain is localized onto a narrow discrete zone of basement weakness in the form of a large rift fault (Style-1 localization), and onto a broader discrete zone of basement weakness in the form of a fault cluster (Style-2 localization). We argue that the CSZ and adjacent terrane boundaries represent zones of mechanical weakness that controlled the first-order strain distribution and rift development during the earliest phase of extension. The established early-rift structure, modulated by structural inheritance, then persisted through the subsequent rift phases. The results of our study, in a juvenile and relatively well-exposed and data-rich rift, are applicable to understanding the structural evolution of deeper, buried ancient rifts.

Highlights

  • Tectonic extension of the continental lithosphere is typically accommodated by the brittle deformation of the upper crust, demonstrated by the emergence of normal fault populations (Cowie et al, 2005; Agostini et al, 2011; Muirhead et al, 2016, 2019)

  • We investigated the distribution of strain during the earliest phase of extension in the Rukwa Rift, a Phanerozoic multiphase magma-poor rift basin that developed along the trend of the Precambrian Chisi Shear Zone (CSZ) and terrane boundary shear zones in East Africa

  • 2) In the northwestern section of the rift, the presence and proximity of the CSZ and the Katuma-Wakole terrane boundary facilitated a competition for strain localization between the CSZ and the adjacent terrane boundary, whereas in the southeastern section where the CSZ is either absent or at a significantly large distance, strain is primarily localized along the Lupa-Mbozi terrane boundary

Read more

Summary

INTRODUCTION

Tectonic extension of the continental lithosphere is typically accommodated by the brittle deformation of the upper crust, demonstrated by the emergence of normal fault populations (Cowie et al, 2005; Agostini et al, 2011; Muirhead et al, 2016, 2019). We show that the potentially lithosphere-scale Precambrian Chisi Shear Zone (CSZ) and its adjacent terrane boundaries (Figure 1B; Lemna et al, 2019; Heilman et al, 2019) represent major zones of pre-rift basement mechanical weakness that controlled the location, structure, and evolution of both the border and intra-basinal faults during the earliest phase of continental extension. We calculate along-rift variations in Karoo-age tectonic extension (geometrically-restored to Karoo time surface; Figures 4A–D) accommodated by slip on the Lupa Fault and intra-basinal faults, again using data published by Morley et al (1992) We integrate these structural data with aeromagnetic data analysis to investigate the influence of the pre-rift basement structure on the early-rift structure and evolution of the Rukwa Rift (Figures 4A–C)

RESULTS
CONCLUSION
Findings
DATA AVAILABILITY STATEMENT
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call