Abstract
Historically, infrasound arrays have been deployed in rural environments where anthropological noise sources are limited. As interest in monitoring sources at local distances grows in the infrasound community, it will be vital to understand how to monitor infrasound sources in an urban environment. Arrays deployed in urban centers have to overcome the decreased signal to noise ratio and reduced amount of real estate available to deploy an array. To advance the understanding of monitoring infrasound sources in urban environments, we deployed local and regional infrasound arrays on building rooftops of the campus of Southern Methodist University (SMU) and collected data for one seasonal cycle. The data was evaluated for structural source signals (continuous-wave packets) and when a signal was identified the back azimuth to the source was determined through frequency wavenumber analysis. This information was used to identify hypothesized structural sources; these sources were verified through direct measurement, structural numerical modeling and/or full waveform propagation modeling. Permission to publish was granted by Director, Geotechnical & Structures Laboratory.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have