Abstract

New generations of offshore wind turbines are playing a leading role in the energy arena. One of the target challenges is to achieve reliable Structural Health Monitoring (SHM) of the blades. Fault detection at the early stage is a vital issue for the structural and economical success of the large wind turbines. In this study, experimental measurements of Frequency Response Functions (FRFs) are used and identification of mode shapes and natural frequencies is accomplished via an LMS system. Novelty detection is introduced as a robust statistical method for low-level damage detection which has not yet been widely used in SHM of composite blades. Fault diagnosis of wind turbine blades is a challenge due to their composite material, dimensions, aerodynamic nature and environmental conditions. The novelty approach combined with vibration measurements introduces an online condition monitoring method. This paper presents the outcomes of a scheme for damage detection of carbon fibre material in which novelty detection approaches are applied to FRF measurements. The approach is demonstrated for a stiffened composite plate subject to incremental levels of impact damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.