Abstract
Implantable neurotechnology enables monitoring and stimulating of the brain signals responsible for performing cognitive, motor, and sensory tasks. Electrode arrays implanted in the brain are increasingly used in the clinic to treat a variety of sources of neurological diseases and injuries. However, the implantation of a foreign body typically initiates a tissue response characterized by physical disruption of vasculature and the neuropil as well as the initiation of inflammation and the induction of reactive glial states. Likewise, electrical stimulation can induce damage to the surrounding tissue depending on the intensity and waveform parameters of the applied stimulus. These phenomena, in turn, are likely influenced by the surface chemistry and characteristics of the materials employed, but further information is needed to effectively link the biological responses observed to specific aspects of device design. In order to inform improved design of implantable neurotechnology, we are investigating the basic science principles governing device-tissue integration. We are employing multiple techniques to characterize the structural, functional, and genetic changes that occur in the cells surrounding implanted electrodes. First, we have developed a new "device-in-slice" technique to capture chronically implanted electrodes within thick slices of live rat brain tissue for interrogation with single-cell electrophysiology and two-photon imaging techniques. Our data revealed several new observations of tissue remodeling surrounding devices: (a) there was significant disruption of dendritic arbors in neurons near implants, where losses were driven asymmetrically on the implant-facing side. (b) There was a significant loss of dendritic spine densities in neurons near implants, with a shift toward more immature (nonfunctional) morphologies. (c) There was a reduction in excitatory neurotransmission surrounding implants, as evidenced by a reduction in the frequency of excitatory postsynaptic currents (EPSCs). Lastly, (d) there were changes in the electrophysiological underpinnings of neuronal spiking regularity. In parallel, we initiated new studies to explore changes in gene expression surrounding devices through spatial transcriptomics, which we applied to both recording and stimulating arrays. We found that (a) device implantation is associated with the induction of hundreds of genes associated with neuroinflammation, glial reactivity, oligodendrocyte function, and cellular metabolism and (b) electrical stimulation induces gene expression associated with damage or plasticity in a manner dependent upon the intensity of the applied stimulus. We are currently developing computational analysis tools to distill biomarkers of device-tissue interactions from large transcriptomics data sets. These results improve the current understanding of the biological response to electrodes implanted in the brain while producing new biomarkers for benchmarking the effects of novel electrode designs on responses. As the next generation of neurotechnology is developed, it will be increasingly important to understand the influence of novel materials, surface chemistries, and implant architectures on device performance as well as the relationship with the induction of specific cellular signaling pathways.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have