Abstract

Structural features of mineral crystal phases and defectiveness of bismuth organosiliconate crystals are inspected at various temperatures of treatment (from 100 to 500°C). X-ray diffraction enables evaluation of crystal lattice periods from spectrograms recorded in СuKα radiation. The approximation analysis of the broadening of the most intense diffraction lines in crystals from (hkl) crystallographic indices allows one to determine the coherent domain sizes and microdistortions Δа/а of a crystal lattice. It is found that exposure of the Na2O–Bi2O3–SiO2 system (NBS material) to temperatures of 300–500°C leads to a decrease in amorphism, microdistortions, and the density of dislocations in a crystal lattice of Bi12SiO20 sillenite. The formation of a denser structure of sillenite crystal with higher X-ray density (9.210 g/cm3) and greater cubic crystal lattice parameter (a = 10.1335 A) is detected. The presented Bi12SiO20 material can be used as a gamma and protective filler of radiation protective polymers and in the design of electro-and magneto-optical laser radiation modulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.