Abstract
Structural features of mismatched base pairs were studied on four nonamer hybrid duplexes formed between the 5'-d(GTGATATGC)-3' complement and its 5'-r(GCAUNUCAC)-3' (N = A, C, G, U) counterparts. This oligonucleotide set is considered a model molecular system for future systematic studies of various modifications of internucleotide linkages with respect to their impact on the structure of mismatched base pairs. Raman spectra, measured at 15 degrees C, revealed the prevailing A-like structure of the RNA strand and mixed A-like and B-like characteristics for the DNA strand. All three mismatches disturb only weakly the overall conformation of the hybrid duplex in contrast to analogous mismatched DNA duplexes. In particular, the dT x rG mismatch influences the global hybrid duplex geometry almost negligibly. The dT x rC and dT x rU mismatches induce somewhat more pronounced distortions of the backbone structure and of the thymine position, the latter being expressed by a change of the surrounding methylene group without effect on the carbonyl's vibrations. Structural effects of the mismatches correlate well with the duplex thermodynamic stabilities obtained by ultraviolet (UV) absorption, i.e., the dT x rG mismatch decreases the hybrid duplex stability very weakly while the effect of both pyrimidine-pyrimidine mismatches is considerable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.