Abstract

High-density lipoproteins (HDL) play a major role in the reverse transport of cholesterol and have antiatherogenic activities. Their major protein component is apolipoprotein (apo) A-I. While apoA-I amphipathic α-helix based secondary structure has been extensively investigated, for its lipid-bound tertiary structure only theoretical models have been proposed. In the past years, experimental approaches aimed at a direct visualization of HDL structure have been exploited, but data obtained through different microscopy techniques are conflicting and do not settle the issue. Here we present a 50 ns molecular dynamics simulation of a synthetic HDL containing two molecules of apoA-I and 101 of l-α-palmitoyl-oleoyl-phosphatidylcholine. Essential dynamics and structural property investigations suggest that the stabilization of the system is obtained through specific motions, whose driving forces are protein–phospholipid interactions. The most important are: the relative sliding of the two apoA-I molecules along their major axes, the relative rotation of the protein chains, and the out-of-plane deformation around proline hinges. The sliding and the out-of-plane deformation allow apoA-I to optimize its interactions with phospholipids, while the rotation is useful to maximize protein–protein salt bridges. The correspondence between computed parameters and their experimental counterparts contributes to validate our model and its dynamic behaviors. Our findings help in defining a molecular model for apoA-I contained in HDL and suggest a possible mechanism through which apoA-I can vary its diameter and accommodate different numbers of phospholipids during the metabolism of HDL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.