Abstract

Stable luminescent colloidal silicon (Si) nanocrystals (NCs) with sufficient surface protection are prepared through femtosecond laser ablation in organic solvent containing diverse concentrations of HF solution. The average size of Si NCs shows the decreasing tendency from 6.5 to 2.7 nm when the concentration of HF varies from 0 to 11.1 vol% (volume ratio). In line with the structural evolution, UV–visible absorption, photoluminescence (PL) excitation spectra, and time-resolved PL, we propose that room temperature blue emission peaks at 412 and 440 nm originate from alkyl-related radiative recombination centers. The enhanced PL quantum yield of colloidal Si NCs from 16.3% to 76.5% has been attributed to the effective passivation and suppression of non-radiative defect centers with increasing HF concentration from 0 to 11.1 vol%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call