Abstract

Colloidal silicon (Si) nanocrystals (NCs) with different sizes were successfully prepared by femtosecond laser ablation under different laser ablation time (LAT). The mean size decreases from 4.23 to 1.42 nm by increasing the LAT from 30 to 120 min. In combination with structural characterization, temperature-dependent photoluminescence (PL), time-resolved PL and PL excitation spectra, we attribute room-temperature blue emissions peaked at 405 and 430 nm to the radiative recombination of electron–hole pairs via the oxygen-deficient centers related to Si–C–H2 and Si–O–Si bonds of colloidal Si NCs prepared in 1-octene, respectively. In particular, the measured PL quantum yield of colloidal Si NCs has been enhanced significantly from 23.6% to 55.8% by prolonging the LAT from 30 to 120 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call