Abstract

Alkali‑oxygen cooking of lignocellulose offers lignin many structural properties and bioactivities for biorefinery. In this work, milled wood lignin (MWL) and alkali‑oxygen lignin (AOL) were isolated from rice straw and alkali‑oxygen black liquor, respectively. The lignin structure was characterized by spectroscopy and wet chemistry. Antioxidant activity of lignins was assessed by DPPH·and ABTS scavenging ability assay. Results showed the oxidization and condensation of lignin occurred during alkali‑oxygen cooking. The p-hydroxyphenyl was more easily removed from rice straw than guaiacyl and syringyl units. The ester or ether linkages derived from hydroxycynnamic acids, and the main interunit linkages, i.e. β–O–4′ bonds, were mostly cleaved. Lignin-xylan complex had high reactivity under alkali‑oxygen condition. Tricin, incorporated into lignin, was detected in MWL but was absent in AOL. Nitrobenzene oxidation showed MWL can well represent the protolignin of rice straw, and the products yield decreased dramatically after alkali‑oxygen cooking. AOL had higher radical scavenging ability than MWL indicating alkali‑oxygen cooking was an effective pathway for the enhancement of antioxidant activity of lignin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.