Abstract

The article discusses an approach to creating structural elements by forming periodic structures in the structure, developed based on the results of topological optimization. In the article, a metamaterial is understood as a structure with a complex internal periodic organization of strength elements, the details of which are significantly smaller than the typical dimensions of the final structural product. In this paper, the analysis is devoted to panels with a filler based on periodic structures to achieve the required mechanical characteristics. The transition from the results of the topological optimization is carried out on the basis of engineering analysis, taking into account the particularities of loading, fastening and operational effects on the structure. The use of topology optimization makes it possible to determine the distribution density of periodic structures in the material and to shorten the design cycle of a conventionally optimal design. As a first step solution, authors consider panels based on sandwich panels with the pyramidal fillers. Their application is considered in the aircraft, shipbuilding and construction industries. As basic technological solutions, efficient technologies are proposed - laser radiation sources and a high degree of automation. With these technologies, efficiency and costs of testing and certification of manufacturing are reduced in comparison to the standard approaches, when results of the topology optimization are made using expensive additive manufacturing. The proposed elements make it possible to reduce the metal consumption while achieving the same rigidity and strength of the structure. Another advantage of the proposed structures is their modularity and the ability to optimize the panel filling density without significantly changing the manufacturing process and design. As an application, we considered the possibility of creating a large-span panel for civil constructions, which is characterized by high specific loads with a significant span length (20 m).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call