Abstract

A topology optimization procedure is presented as a tool for determining the distribution of external strengthening of concrete slabs, using Carbon Fiber Reinforced Polymer (CFRP). Although the procedure is applied to slabs in this work, the technique can be used in any concrete structure to be reinforced. Numerical simulations are performed using the Finite Element Method, in combination with the automated topology optimization procedure, to indicate the optimal region for placement of the reinforcement. The influence of some aspects of the slab's structural behavior on the optimization results is presented: concrete cracking, boundary conditions and reinforcement rate. A brief discussion is given of the similarity between the topology optimization results obtained by the maximum stiffness and ultimate strength criteria. Gains are found in the stiffness and strength of reinforced parts. A comparison with conventional reinforcement techniques demonstrates that topology optimization can be a useful tool for defining the region of reinforcement, allowing for material cost savings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.