Abstract

Abstract Transparent conductive dysprosium doped ZnO (Dy:ZnO) thin films with preferential orientation in the (0 0 0 2) direction were deposited on (0 0 0 1) sapphire substrate by buffer assisted pulsed laser deposition. The experimental results show that the resistivity of Dy:ZnO thin films decreased to a minimum value of ∼7.6×10−4 Ω cm with increasing Dy concentration up to ∼0.45 at%, then increased with the further increase of Dy concentration. On the contrary, the band gap and carrier concentration of Dy:ZnO thin films initially increased, then decreased with increase of Dy concentration. The blue shift of band gap of Dy:ZnO thin films with increasing carrier concentration was attributed to the competing effects of Burstein-Moss shift and band gap narrowing. A bright room temperature photoluminescence observed at ∼575 nm in all the Dy:ZnO thin films, with maximum intensity at ∼0.45 at% of Dy doping, was attributed to be due to intra-band transitions of Dy3+ in ZnO. Near band edge photoluminescence of ZnO was observed at ∼380 nm with photoluminescence intensity decreasing with increase of Dy concentration. Such Dy:ZnO thin films are found to be suitable candidate for luminescent device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.