Abstract
The Half Heusler alloy (HHA) MnCrP has been studied theoretically for structural, elasto-mechanical and phonon properties. The structure is optimized and the calculated structural parameters are close to the literature. This optimized data is used to estimate three independent second-order cubic elastic constants [Formula: see text], [Formula: see text] and [Formula: see text]. The mechanical stability criteria are explored by these constants and further used to estimate the elastic moduli; Young’s, bulk and shear modulus. The mechanical parameters like Poisson’s ratio, Pugh’s ratio, anisotropic factor, Cauchy pressure, shear constant, Lame’s constants, Kleinman parameter are also calculated and discussed. Discussions reveal the ductile nature, ionic behavior, anisotropic nature and mechanical stability of MnCrP. The metallic nature, compressibility, stiffness and interatomic forces of material are also described. Furthermore, the Debye temperature, where the collective vibrations shifts to an independent thermal vibrations, is also calculated. Longitudinal and transverse sound velocities are also obtained to investigate the phonon modes of oscillation. These phonon modes confirm the stability of the alloy as no negative phonon frequencies in the phonon-dispersion curves. These curves are used to estimate the reststrahlen band where light reflects 100% and the suitability of material is checked for Far Infrared (FIR), photographic, optoelectronic devices and sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.