Abstract

The Influenza flu is a pandemic disease that renders the highest risk factor to the society due to its efficient ability of airborne transmission. Studies on the H1N1 strain gained significant focus, since its pandemic outbreak in 2009 and particularly the computational studies on its structural elements significantly aided in revealing their functional uniqueness. Among the 10 structural proteins of H1N1, the RNA-dependent RNA polymerase (RdRp) heterotrimeric protein complex, which is responsible for the synthesis of viral RNA (vRNA) from the negative-sense RNA genome of the virus, is the focus of the present study. This study aimed to investigate the structural dynamics of the RdRp complex with particular emphasis on the reported 17 mutations. The mutant strain is more stabilized by strong concerted residue-residue interactions at both intra- and inter- monomeric levels. In comparison, the mutant strain is structurally flexible with enhanced stabilizing interactions. The structural dynamics of RdRp are significantly governed by the dynamics of the (i) endonuclease domain of PA, (ii) RNA-entry region of PB1 and (iii) cap-binding region of PB2. Explicitly, the cap binding region of PB2 expresses (i) a concerted motion with the RNA-entry region, along with (ii) an anti-correlated motion with the endonuclease domain of the PA subunit, which further supports the stable dynamics of cap-binding towards RNA binding. These findings contribute to the understanding of the structural dynamics associated with the pandemic and mutant structures of RdRp and render a basic knowledge for further development of novel inhibitors towards influenza flu affected humans. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.