Abstract

Influenza virus RNA-dependent RNA polymerase is a heterotrimer composed of PA, PB1, and PB2 subunits. RNA-dependent RNA polymerase is required for both transcription and replication of influenza viral RNA taking place in the nucleus of infected cells. A "cap-snatching" mechanism is used to generate a 5'-capped primer for transcription in which the cap-binding domain of PB2 (PB2cap) captures the 5' cap of the host pre-mRNA. Our statistical analysis of PB2 sequences showed that residue Lys(339) located in the cap-binding pocket of H5N1 PB2cap was gradually replaced by Thr(339) over the past decade. To understand the role of this amino acid polymorphism, we solved the crystal structures of PB2cap with or without a pre-mRNA cap analog, m(7)GTP, in the presence of Lys(339) or Thr(339). The structures showed that Lys(339) contributes to binding the γ-phosphate group of m(7)GTP, and the replacement of Lys(339) by Thr eliminates this interaction. Isothermal titration calorimetry analysis showed that Thr(339) attenuated the PB2cap cap binding activity in vitro compared with Lys(339). Further functional studies confirmed that Thr(339)-PB2-containing ribonucleoprotein complex has a reduced influenza polymerase activity and RNA synthesis activity, and a reconstituted H5N1 virus containing the Thr(339) substitution exhibited a lower virulence to mice but more active replication in Madin-Darby canine kidney cells. The K339T substitution in the cap-binding pocket of PB2 modulates the polymerase activity and virulence by regulating the cap binding activity. It is informative to track variations in the cap-binding pocket of PB2 in surveillance of the evolution and spread of influenza virus.

Highlights

  • Amino acid changes in PB2 are associated with evolution of influenza virus

  • Influenza virus RNA-dependent RNA polymerase is a heterotrimer composed of PA, PB1, and PB2 subunits

  • Further functional studies confirmed that Thr339-PB2-containing ribonucleoprotein complex has a reduced influenza polymerase activity and RNA synthesis activity, and a reconstituted H5N1 virus containing the Thr339 substitution exhibited a lower virulence to mice but more active replication in Madin-Darby canine kidney cells

Read more

Summary

Introduction

Results: K339T substitution in PB2cap reduces the cap binding affinity, polymerase activity, RNA synthesis activity, and murine mortality. Conclusion: Substitution in PB2cap modulates the polymerase activity and virulence by regulating the cap binding activity. Our statistical analysis of PB2 sequences showed that residue Lys339 located in the cap-binding pocket of H5N1 PB2cap was gradually replaced by Thr339 over the past decade. Further functional studies confirmed that Thr339-PB2-containing ribonucleoprotein complex has a reduced influenza polymerase activity and RNA synthesis activity, and a reconstituted H5N1 virus containing the Thr339 substitution exhibited a lower virulence to mice but more active replication in Madin-Darby canine kidney cells. The K339T substitution in the cap-binding pocket of PB2 modulates the polymerase activity and virulence by regulating the cap binding activity. It is informative to track variations in the capbinding pocket of PB2 in surveillance of the evolution and spread of influenza virus

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.