Abstract

Turbine blade lengths have been increasing in recent wind energy system designs in order to enhance power generation capacity. A longer blade length makes the structural system more flexible and often results in an undesirable, large dynamic response, which should be avoided in the design of the system. In the present study, the equations of motion of a rotating wind turbine blade undergoing gravitational force are derived, while considering tilt and pitch angles. Since the gravitational force acting on the rotating blade creates an oscillating axial force, this results in oscillating stiffness terms in the governing equations. The validity of the derived rotating blade model is evaluated by comparing its transient responses to those obtained by using a commercial finite element code. Effects of rotating speed, tilt angle, and pitch angle of the wind turbine blade on its dynamic stability characteristics are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.