Abstract
AbstractVibration‐based Structural Health Monitoring (SHM) is one of the most popular solutions to assess the safety of civil infrastructure. SHM applications all begin with measuring the dynamic response of structures, but displacement measurement has been limited by the difficulty in requiring a fixed reference point, high cost, and/or low accuracy. Recently, researchers have conducted studies on vision‐based structural health monitoring, which provides noncontact and efficient measurement. However, these approaches have been limited to stationary cameras, which have the challenge of finding a location to deploy the cameras with appropriate line‐of‐sight, especially to monitor critical civil infrastructures such as bridges. The Unmanned Aerial System (UAS) can potentially overcome the limitation of finding optimal locations to deploy the camera, but existing vision‐based displacement measurement methods rely on the assumption that the camera is stationary. The displacements obtained by such methods will be a relative displacement of a structure to the camera motion, not an absolute displacement. Therefore, this article presents a framework to achieve absolute displacement of a structure from a video taken from an UAS using the following phased approach. First, a target‐free method is implemented to extract the relative structural displacement from the video. Next, the 6 degree‐of‐freedom camera motion (three translations and three rotations) is estimated by tracking the background feature points. Finally, the absolute structural displacement is recovered by combining the relative structural displacement and the camera motion. The performance of the proposed system has been validated in the laboratory using a commercial UAS. Displacement of a pinned‐connected railroad truss bridge in Rockford, IL subjected to revenue‐service traffic loading was reproduced on a hydraulic simulator, while the UAS was flown from a distance of 4.6 m (simulating the track clearance required by the Federal Railroad Administration), resulting in estimated displacements with an RMS error of 2.14 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer-Aided Civil and Infrastructure Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.