Abstract

The formation of amyloid fibrils is associated with many severe pathologies as well as the execution of essential physiological functions by proteins. Despite the diversity, all amyloids share a similar morphology and consist of stacked β-strands, suggesting high amyloidogenicity of native proteins enriched with β-structure. Such proteins include those with a β-barrel-like structure with β-strands arranged into a cylindrical β-sheet. However, the mechanisms responsible for destabilization of the native state and triggering fibrillogenesis have not thoroughly explored yet. Here we analyze the structural determinants of fibrillogenesis in proteins with β-barrel structures on the example of odorant-binding protein (OBP), whose amyloidogenicity was recently demonstrated in vitro. We reveal a crucial role in the fibrillogenesis of OBPs for the “open” conformation of the molecule. This conformation is achieved by disrupting the interaction between the β-barrel and the C-terminus of protein monomers or dimers, which exposes “sticky” amyloidogenic sites for interaction. The data suggest that the “open” conformation of OBPs can be induced by destabilizing the native β-barrel structure through the disruption of: 1) intramolecular disulfide cross-linking and non-covalent contacts between the C-terminal fragment and β-barrel in the protein's monomeric form, or 2) intermolecular contacts involved in domain swapping in the protein's dimeric form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call