Abstract

This paper presents the direct displacement-based design (DDD) procedure, structural modelling method, and structural performance calibration for post-tensioned CLT shear wall structures (PT-CLTstrs). Numerical models of the post-tensioned (PT) CLT shear walls were developed and calibrated with the experimental results. Based on the developed shear wall models, parametric analysis were conducted to investigate the lateral performance influencing factors. Then, a DDD procedure was developed and demonstrated by the design examples of a set of 8-, 12-, and 16-storey PT-CLTStrs. The corresponding simplified structural models were developed, and then a series of pushover and time-history dynamic analysis were conducted to calibrate the calculated structural performance objectives with the design targets of the DDD procedure. Finally, the empirical cumulative distribution functions (CDFs) of the maximum inter-storey drift (MaxISDR) were constructed. It is found that when the width of the PT CLT shear walls increases from 1.8 m to 3.0 m, the base shear at the drift of 2.0 % increases by twice accordingly. When the diameter of the PT strand increases from 15.2 mm to 34.6 mm, the base shear at the drift of 2.0 % increases by up to five times. Additionally, the MaxISDR limitation of the PT-CLTStrs is recommended as 2.2 % under the collapse prevention (CP) hazard level. The study results can serve as guidelines for the development of engineering design methods for the PT-CLTStrs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.