Abstract
Deployable mechanisms with light weight and high storage ratio have received considerable attention for space applications. To meet the requirements of space missions, a parabolic cylindrical deployable antenna based on cable-rib tension structures is proposed and verified by a physical prototype. The parabolic cylindrical antenna adopts simple parallel four-bar mechanisms to construct the basic deployable unit, and the cylindrical direction dimension can be easily extended by modularization, which has obvious advantages in storage ratio and area density. Considering the complexity of the entire antenna structure design, including cable networks and flexible trusses, the form-finding design optimization model of a parabolic cylindrical antenna is established using the force density sensitivity method, and then the kinematics analysis of the deployable mechanism is carried out. Finally, a single-module prototype with a deployable diameter of 4 m × 2 m was designed and fabricated. The results of the ground deployment process test and surface accuracy measurements show that the antenna has good feasibility and practicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.