Abstract

Agostic interactions in yttrium alkyls are structure dependent. Primary alkyl yttrium complexes have beta-CH(2) agostic interactions at low temperature, but a shift toward alpha-agostic interactions occurs on warming. For the more crowded beta-disubstituted yttrium alkyls, an alpha-CH(2) agostic interaction is seen. The thermodynamics of alkene binding to the primary alkyl yttrium complex Cp(2)YCH(2)CH(2)CH(CH(3))(2) (2) depend strongly on the structure of the alkene. A single allylic substituent on the alkene has a small effect on alkene binding, but a second allylic substituent has a large destabilizing effect. Propene binding to yttrium alkyls is largely independent of the nature of the alkyl ligand. Equilibrium constants for propene binding to n-, gamma-substituted, beta-substituted, and secondary alkyl yttrium complexes are similar. The rate of migration of an alkyl group to a coordinated alkene depends strongly on the structure of the alkyl group: n-alkyl approximately gamma-substituted >> beta-substituted >> alpha-substituted. The approximately 200-fold slower insertion of propene into Cp(2)YCH(2)CH(CH(3))(2) (6) than that into Cp(2)YCH(2)CH(2)CH(CH(3))(2) (2) is therefore due to kinetically slow migration of the beta-disubstituted alkyl group of 6 and not to differences in the equilibrium binding of propene. Processes related to chain transfer and site epimerization at the metal center are also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.