Abstract

Micro air vehicles (MAV) and the notion of morphing are always changing to suit their mission characteristics. To achieve twist morphing, however, the process underlying the application of the morphing force and its related aerodynamic load is not well understood. In this study, the structural deformation of the washout twist morphing wing MAV was investigated, and the association between wing deformation, morphing force, and membrane inflation owing to aerodynamic force was clarified. Several numerical simulations of washout TM wings were undertaken and compared to those of rigid and membrane wings. The results demonstrated that twist morphing is associated with considerable wing deformation. In comparison to the TM 3N, TM 1N, and baseline wing, the TM 5N wing was the most distorted. The deformation of the wing structure was substantially influenced by the morphing force applied to the wing. Larger morphing power led to a greater degree of wing distortion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call