Abstract

Hollow gold nanospheres (HGNs) are core/shell structures with a dielectric material core, usually composed of solvent, and a gold metal shell. Such structures have two metal/dielectric interfaces to allow interaction between the gold metal with the interior and external dielectric environment. Upon illumination by light, HGNs exhibit unique surface plasmon resonance (SPR) properties compared to solid gold nanoparticles. Their SPR absorption/scattering can be tuned by changing their diameter, shell thicknesses, and surface morphologies. In addition to the low toxicity, easy functionalization, resistance to photobleaching, and sensitivity to changes in surrounding medium of gold, the enhanced surface-to-volume ratio and tunable SPR of HGNs make them highly attractive for different applications in the fields of sensing, therapy, and theranostics. In this article, we review recent progress on the synthesis and structural control of HGNs and applications of their SPR properties in biomedical sensing and theranostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > in vitro Nanoparticle-Based Sensing Diagnostic Tools > in vivo Nanodiagnostics and Imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call