Abstract

Metal-Oxide-Silicon (MOS) structures containing silicon nanoparticles (SiNPs) in three different gate dielectrics, single SiOx layer (c-Si/SiNPs-SiOx), two-region (c-Si/thermal SiOx/SiNPs-SiOx) or three-region (c-Si/thermal SiO2/SiNPs-SiOx/SiO2) oxides, were prepared on n-type (100) c-Si wafers. The silicon nanoparticles were grown by a high temperature furnace annealing of sub-stoichiometric SiOx films (x=1.15) prepared by thermal vacuum evaporation technique. Annealing in N2 at 700 or 1000°C leads to formation of amorphous or crystalline SiNPs in a SiOx amorphous matrix with x=1.8 or 2.0, respectively. The three-region gate dielectric (thermal SiO2/SiNPs-SiO2/SiO2) was prepared by a two-step annealing of c-Si/thermal SiO2/SiOx structures at 1000°C . The first annealing step was carried out in an oxidizing atmosphere while the second one was performed in N2. Cross-sectional Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy have proven both the nanoparticle growth and the formation of a three region gate dielectric. Annealed MOS structures with semitransparent aluminum top electrodes were characterized electrically by current/capacitance–voltage measurements in dark and under light illumination. A strong variation of the current at negative gate voltages on the light intensity has been observed in the control and annealed at 700°C c-Si/SiNPs-SiOx/Al structures. The obtained results indicate that MOS structures with SiO1.15 gate dielectric have potential for application in light sensors in the NIR–Visible Light–UV range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.