Abstract

Cholesteric mesophases based on cellulose ethers, such as ethyl cellulose and hydroxypropyl cellulose, have been studied widely for their remarkable ability to display macroscopic structural color. However, the typical time scales involved in the multiscale self-assembly of cholesteric liquid crystals, from individual nanoscale helical arrangements to discrete microscopic domains, and their dependence on the gel's viscoelastic properties remain underexplored. Here, we establish a quantitative relationship between the kinetics of structural color formation after shear deformation and cholesteric order development at the nano- and microscales. Utilizing rheology in tandem with static and time-resolved reflectivity measurements, we underscore the strong influence of polymer diffusivity and chain elasticity on self-assembly kinetics in cholesteric cellulose ether gels. We show that our phenomenological model can be employed to assess the structure-property relationships of multiple polysaccharide systems, elucidating key design guidelines for the development and processing of structurally colored cholesteric mesophases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.