Abstract

Ionic hydrogels have attracted extensive attention because of their wide applicability in electronic skins, biosensors, and other biomedical areas. Tremendous effort is dedicated to developing ionic hydrogels with improved detection accuracy and multifunctionality. Herein, we present an inverse opal scaffold-based structural color ionic hydrogel with the desired features as intelligent patches for wound management. The patches were composed of a polyacrylamide-poly(vinyl alcohol)-polyethylenimine-lithium chloride (PAM-PVA-PEI-LiCl) inverse opal scaffold and a vascular endothelial growth factor (VEGF) mixed methacrylated gelatin (GelMA) hydrogel filler surface. The scaffold imparted the composite patches with brilliant structural color, conductive property, and freezing resistance, while the VEGF-GelMA surface could not only prevent the ionic hydrogel from the interference of complex wound conditions but also contribute to the cell proliferation and tissue repair in the wounds. Thus, the hydrogel patches could serve as electronic skins for in vivo wound healing and monitoring with high accuracy and reliability. These features indicate that the proposed structural color ionic hydrogel patches have great potential for clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.