Abstract

AbstractThe rapid progress in flexible electronic devices has attracted immense interest in many applications, such as health monitoring devices, sensory skins, and implantable apparatus. Here, inspired by the adhesion features of mussels and the color shift mechanism of chameleons, a novel stretchable, adhesive, and conductive structural color film is presented for visually flexible electronics. The film is generated by adding a conductive carbon nanotubes polydopamine (PDA) filler into an elastic polyurethane (PU) inverse opal scaffold. Owing to the brilliant flexibility and inverse opal structure of the PU layer, the film shows stable stretchability and brilliant structural color. Besides, the catechol groups on PDA impart the film with high tissue adhesiveness and self‐healing capability. Notably, because of its responsiveness, the resultant film is endowed with color‐changing ability that responds to motions, which can function as dual‐signal soft human‐motion sensors for real‐time color‐sensing and electrical signal monitoring. These features make the bio‐inspired hydrogel‐based electronics highly potential in the flexible electronics field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call