Abstract
The rehydroxylation dating of ancient pottery estimates the age of ceramic manufacture based upon the total hydroxyl (OH) accumulation since initial firing. The diffusion of OH is impacted by the structural porosity of the ceramic that becomes progressively, or suddenly, closed with increasing temperature as the clay structure collapses. Changes in ceramic mineral structure along the temperature continuum occur at certain thermal set points. Infrared spectroscopic analysis of heat-treated kaolin, illite, and montmorillonite reveals that shifts in the Si-O band correlate with the extent of structural collapse occurring between 600 and 1000 °C. Accelerated rehydroxylation experiments reveal that the activation energy of rehydroxylation decreases with greater structural collapse and indicates that the rate of rehydroxylation will be faster for ceramics fired at more elevated temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.