Abstract
Water adsorption on kaolinite, illite, and montmorillonite clays was studied as a function of relative humidity (RH) at room temperature (298 K) using horizontal attenuated total reflectance (HATR) Fourier transform infrared (FTIR) spectroscopy equipped with a flow cell. The water content as a function of RH was modeled using the Brunauer, Emmett, and Teller (BET) and Freundlich adsorption isotherm models to provide complementary multilayer adsorption analysis of water uptake on the clays. A detailed analysis of model fit integrity is reported. From the BET fit to the experimental data, the water content on each of the three clays at monolayer (ML) water coverage was determined and found to agree with previously reported gravimetric data. However, BET analysis failed to adequately describe adsorption phenomena at RH values greater than 80%, 50%, and 70% RH for kaolinite, illite, and montmorillonite clays, respectively. The Freundlich adsorption model was found to fit the data well over the entire range of RH values studied and revealed two distinct water adsorption regimes. Data obtained from the Freundlich model showed that montmorillonite has the highest water adsorption strength and highest adsorption capacity at RH values greater than 19% (i.e., above ML water adsorption) relative to the kaolinite and illite clays. The difference in the observed water adsorption behavior between the three clays was attributed to different water uptake mechanisms based on a distribution of available adsorption sites. It is suggested that different properties drive water adsorption under different adsorption regimes resulting in the broad variability of water uptake mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.