Abstract

Since the discovery of superconductive twisted bilayer graphene which initiated the field of twistronics, moiré systems have not ceased to exhibit fascinating properties. We demonstrate that in boron nitride twisted bilayers, for a given moiré periodicity, there are five different stackings which preserve the monolayer hexagonal symmetry (i.e. the invariance upon rotations of 120°) and not only two as always discussed in literature. We introduce some definitions and a nomenclature that identify unambiguously the twist angle and the stacking sequence of any hexagonal bilayer with order-3 rotation symmetry. Moreover, we employ density functional theory to study the evolution of the band structure as a function of the twist angle for each of the five stacking sequences of boron nitride bilayers. We show that the gap is indirect at any angle and in any stacking, and identify features that are conserved within the same stacking sequence irrespective of the angle of twist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.