Abstract

Positron emission tomography (PET) using radiolabeled, monoclonal antibodies has become an effective, noninvasive method for tumor detection and is a critical component of targeted radionuclide therapy. Metal ion chelator and bacterial siderophore desferrioxamine (DFO) is the gold standard compound for incorporation of zirconium-89 in radiotracers for PET imaging because it is thought to form a stable chelate with [89Zr]Zr4+. However, DFO may not bind zirconium-89 tightly in vivo, with free zirconium-89 reportedly liberated into the bones of experimental mouse models. Although high bone uptake has not been observed to date in humans, this potential instability has been proposed to be related to the unsaturated coordination sphere of [89Zr]Zr-DFO, which is thought to consist of the 3 hydroxamate groups of DFO and 1 or 2 water molecules. In this study, we have used a combination of X-ray absorption spectroscopy and density functional theory (DFT) geometry optimization calculations to further probe the coordination chemistry of this complex in solution. We find the extended X-ray absorption fine structure (EXAFS) curve fitting of an aqueous solution of Zr(IV)-DFO to be consistent with an 8-coordinate Zr with oxygen ligands. DFT calculations suggest that the most energetically favorable Zr(IV) coordination environment in DFO likely consists of the 3 hydroxamate ligands from DFO, each with bidentate coordination, and 2 hydroxide ligands. Further EXAFS curve fitting provides additional support for this model. Therefore, we propose that the coordination sphere of Zr(IV)-DFO is most likely completed by 2 hydroxide ligands rather than 2 water molecules, forming Zr(DFO)(OH)2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.