Abstract

Whole-cell high-resolution magic angle spinning (HR-MAS) NMR was employed to survey the surface polysaccharides of a group of clinical and environmental isolates of Clostridium difficile. Results indicated that a highly conserved surface polysaccharide profile among all strains studied. Multiple additional peaks in the anomeric region were also observed which prompted further investigation. Structural characterization of the isolated surface polysaccharides from two strains confirmed the presence of the conserved water soluble polysaccharide originally described by Ganeshapillai et al. which was composed of a hexaglycosyl phosphate repeat consisting of [→6)-β-d-Glcp-(1-3)-β-d-GalpNAc-(1-4)-α-d-Glcp-(1-4)-[β-d-Glcp(1-3]-β-d-GalpNAc-(1-3)-α-d-Manp-(1-P→]. In addition, analysis of phenol soluble polysaccharides revealed a similarly conserved lipoteichoic acid (LTA) which could be detected on whole cells by HR-MAS NMR. Conventional NMR and mass spectrometry analysis indicated that the structure of this LTA consisted of the repeat unit [→6)-α-d-GlcpNAc-(1-3)-[→P-6]-α-d-GlcpNAc-(1-2)-d-GroA] where GroA is glyceric acid. The repeating units were linked by a phosphodiester bridge between C-6 of the two GlcNAc residues (6-P-6). A minor component consisted of GlcpN-(1-3) instead of GlcpNAc-(1-3) in the repeat unit. Through a 6–6 phosphodiester bridge this polymer was linked to →6)-β-d-Glcp-(1-6)-β-d-Glcp-(1-6)-β-d-Glcp-(1-1)-Gro, with glycerol (Gro) substituted by fatty acids. This is the first report of the utility of HR-MAS NMR in the examination of surface carbohydrates of Gram positive bacteria and identification of a novel LTA structure from Clostridium difficile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.