Abstract
Chemically modified biomaterial surfaces (titanium and glass) covered with polyelectrolyte self-assembled films formed by the alternating adsorption of cationic poly-L-lysine (PLL) and anionic poly-L-glutamic acid (PGA) were structurally characterized by atomic force microscopy. Complementary information concerning the thickness and layer-by-layer growth of the films was provided by optical waveguide light-mode spectroscopy. The frequently used ex situ and the rarely used in situ build-up methods were compared. Important aspects of the industrial applicability of these films, their stability in time, and possible differences in their morphology were investigated. The films revealed a granular pattern, with grain diameters of 270 +/- 87 nm for glass (up to 8 bilayers) and 303 +/- 89 nm for titanium (up to 10 bilayers), independently of the build-up procedure. Both surfaces displayed a rehydration capability, the titanium surface exhibiting a better stability in time. The high roughness values observed at acidic or basic pH are related to the degree of ionization of PGA and PLL.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have