Abstract

Biochar from lignocellulosic biomass is emerging as a sustainable material with versatile applications, but its detailed properties are poorly understood because of its structural complexity. We propose a biochar structural development model based on experimental results including composition analysis, surface area and pore analysis, X-ray diffraction analysis, electron microscopy imaging, and electron energy loss spectroscopy. Loblolly pine derived biochars were produced at different carbonization temperatures between 300 to 1000 °C. Fixed carbon, sp2 content, and number of graphene layers increased with increased carbonization temperature. Alternating average C–C bond length, interlayer spacing distance, and layer coherence length were observed. Bulk plasmon excitation energy was correlated to the average C–C bond length, and it serves as a good indicator of the carbon structure development when compared to the perfect graphitic carbon structure. On the basis of the experimental results, four different ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.