Abstract

Cross-sections of GaN/AlN/3C-SiC/Si(111) system have been studied by electron microscopy techniques. A nanometer thick buffer layer of silicon carbide on Si(111) substrate was formed using an original solid-phase epitaxy method. The subsequent layers of gallium nitride and aluminum nitride were grown by the method hydride-chloride vapor phase epitaxy. The resulting GaN layers display neither threading dislocations nor cracks on any scale. The main fraction of defects in GaN layers have the form of dislocation pileups that are localized at and oriented parallel to the GaN/AlN interface. The dislocation density in the obtained GaN layers is (1–2) × 109 cm−2, which corresponds to a minimum level reported in the available literature. The buffer AlN layer contains nanopores, which reduce the level of stresses at the GaN/AlN interface and thus almost completely inhibit the formation of threading dislocations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.