Abstract
Non-ribosomal peptides are bio synthesized using a range of enzymes that allow much more structural variability compared with "normal" peptides. Deviations from the standard amino acid structures are common features of this diverse class of natural products, making sequencing a challenging process. FTICR mass spectrometry, specifically the complementary tandem mass spectrometry techniques collision activated dissociation (CAD) and electron induced dissociation (EID), have been used to reveal structural information on the non-ribosomal peptide actinomycin D. EID was also combined with a multiple ion isolation method in order to provide an accurate (sub-ppm) internal calibration for the product ions. EID has been found to produce more detailed, complementary data than CAD for actinomycin D, with additional information being provided through fragmentation of the sodium and lithium adducts. Furthermore, the use of isolation in the FTICR cell was found to increase product ion intensities relative to the precursor ion, enabling significantly more peaks to be detected than when using EID alone. The combination of multiple ion isolation with EID, therefore, enables an accurate internal calibration of the fragment ions to be made (average mass uncertainty of <0.3 ppm), as well as increasing the degree of fragmentation of the compound, resulting in detailed structural information.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have