Abstract

The structure and serological specificities of the lipopolysaccharides (LPSs) from Salmonella enterica serovar Gallinarum biovar Pullorum were studied to provide an improved basis for the distinction between antigenic types and the development of improved diagnostic tests. The structure of the LPS O-polysaccharide (O-PS) from S. Pullorum standard, intermediate and variant antigenic type strains was determined by mass spectrometry, nuclear magnetic resonance spectroscopy and chemical analysis. The LPS of the three strains shared a common structural repeating oligosaccharide unit containing d-mannose, l-rhamnose, d-galactose and d-tyvelose (1:1:1:1). The O-PS of the variant type LPS contained an additional d-glucose residue linked to the O-4 position of the d-galactose residue. The O-PS of the intermediate type LPS was partially the same as that of the variant LPS, however, the molar ratio of the d-glucose component was lower with respect to the other glycose components. Serological specificities of the three antigenic type LPSs were examined with anti- S. Pullorum LPS monoclonal antibodies (Mabs). On immunoblots, Mabs to the standard type O-PS reacted with high molecular mass (HMM) and low molecular mass (LMM) LPS from the standard strain, and with LMM but not HMM LPS from the variant strain. Monoclonal antibodies to the variant type O-PS reacted with HMM but not LMM LPS from the variant strain, and did not react with HMM or LMM LPS from the standard strain. On ELISA, the standard, intermediate and variant antigenic type strains were differentiated by the relative reactivity with the anti-LPS O-PS Mabs. Several of the anti-LPS O-PS Mabs were specific for S. Pullorum and other serogroup D1 Salmonella, and are potentially useful for the development of improved diagnostic tests for these organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call