Abstract
Graphdiyne (GDY) is a two-dimensional (2D) carbon allotrope consisting of sp2- and sp-hybridized carbon atoms. It and GDY-based materials have tremendous application potentials in the fields of catalysis, energy, sensor, electronics and optoelectronics because of their excellent chemical and physical properties. Thus, the explorations to synthesize high-quality GDY and GDY-based materials and to reveal the relationship between their structures and properties are of significance, in which their structural characterization and identification are a crucial step. In this review, we focus on advanced structural characterization techniques and results on GDY, GDY derivatives, GDY composites and doped GDY, including scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, X-ray absorption spectroscopy (XAS), electron energy loss spectroscopy (EELS), and energy-dispersive X-ray spectroscopy (EDS). This review can provide a systemic understanding of the structural characterization and identification of GDY and GDY-based materials and help their development for high-performance applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have