Abstract

We reported here an interesting source of Alpinia zerumbet Polysaccharides (named AZPs) from the residues after extracting essential oil by steam distillation from Alpinia zerumbet fructus. After a series of purifications, a homogeneous polysaccharide (AZP-2) of molecular weight 1.25 × 105 Da was obtained. Structure, anti-inflammatory activity, and anti-inflammatory mechanism were investigated. AZP-2 was mainly composed of galactose, arabinose, xylopyranose, glucose, and galacturonic acid. The main linkage structure of AZP-2 was determined after integrating the nuclear magnetic resonance (NMR) and methylation analysis, and the structure was comparatively complex. The results indicated that AZP-2 significantly decreased the production of NO and ROS in the inflammatory model established by lipopolysaccharide (LPS) stimulated RAW264.7, particularly at the concentration of 200 μg/mL. Furthermore, AZP-2 significantly modulated the secretion of both pro-inflammatory and anti-inflammatory cytokines. Notably, the mechanism of AZP-2 exhibiting inhibitory effects was related to regulating the NF-κB signaling pathway. Overall, AZP-2 could be used as a potential anti-inflammatory agent for further in-depth studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call