Abstract

Artemisia annua L. is a heat-clearing Chinese medicine and well-known for its antimalarial constituent, artemisinin. It has gained increasing attention for its anti-inflammatory and immunoregulatory activities. Interestingly, the crude polysaccahrides of A. annua exhibited potent anticomplement activity. This study was to isolate and characterize its anticomplement homogeneous polysaccharides from A. annua, and reveal the relationship between structures and anticomplement activities of the isolated polysaccharides. Water-soluble crude polysaccharides from the aerial parts of A. annua were extracted and fractionated by DEAE-cellulose and Sephacryl S-300 gel permeation chromatography. Homogeneity, molecular weight, monosaccharide composition, methylation and NMR analysis were performed to characterize the structures of homogeneous polysaccharides. Their anticomplement activities and targeting components in the complement activation cascade were evaluated by hemolytic assays. Three homogeneous polysaccharides (AAP01-1, AAP01-2 and AAP01-3) were obtained from A. annua. AAP01-1 was composed of seven monosaccharides, including mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose. AAP01-2 and AAP01-3 had similar monosaccharides with AAP01-1, except the absence of glucuronic acid. They were all branched acidic heteropolysaccharides with different contents of galacturonic acid (8%, 28% and 15% for AAP01-1, AAP01-2 and AAP01-3, respectively). AAP01-2 showed potent anticomplement activity with CH50 value of 0.360 ± 0.020 mg/mL through the classical pathway and AP50 value of 0.547 ± 0.033 mg/mL through the alternative pathway. AAP01-3 exhibited slightly weaker activity (CH50: 1.120 ± 0.052 mg/mL, AP50: 1.283 ± 0.061 mg/mL), while AAP01-1 was inactive. Moreover, AAP01-2 acted on C1q, C3, C4, C5 and C9 components and AAP01-3 interacted with C3, C4 and C5 components in the activation cascade of complement system. These results indicated that the relatively high contents of galacturonic acid were important for anticomplement activities of the polysaccharides from A. annua. The anticomplement polysaccharides are another kind of bioactive constituents conferring heat-clearing effects of A. annua.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call