Abstract

BackgroundThe role of selenium (Se) on bone microarchitecture is still poorly understood. The present study aims to investigate the macroscopic and microscopic structures of femoral bone tissue in adult male rats after subchronic peroral administration of Se.MethodsTwenty one-month-old male Wistar rats were randomly divided into two experimental groups. In the first group (Se group) young males were exposed to 5 mg Na2SeO3/L in drinking water, for 90 days. Ten one-month-old males without Se administration served as a control group. At the end of the experiment, macroscopic and microscopic structures of the femurs were analysed using analytical scales, sliding instrument, and polarized light microscopy.ResultsThe body weight, femoral length and cortical bone thickness were significantly decreased in Se group rats. These rats also displayed different microstructure in the middle part of the femur, both in medial and lateral views, where vascular canals expanded into the central area of the bone while, in control rats, these canals occurred only near the endosteal surfaces. Additionally, a smaller number of primary and secondary osteons was identified in Se group rats. Histomorphometric analyses revealed significant increases for area, perimeter, maximum and minimum diameters of primary osteons’ vascular canals but significant reductions for all measured variables of Haversian canals and secondary osteons.ConclusionsSe negatively affected the macroscopic and microscopic structures of femoral bone tissue in adult male rats. The results contribute to the knowledge on damaging impact of Se on bone.

Highlights

  • The role of selenium (Se) on bone microarchitecture is still poorly understood

  • Macroscopic differences Body weight and femoral length were significantly decreased in the Se-exposed rats compared to the control rats

  • Microscopic differences The endosteal border of the femurs from the control rats was formed by non-vascular bone tissue in all views of the thin sections

Read more

Summary

Introduction

The role of selenium (Se) on bone microarchitecture is still poorly understood. The present study aims to investigate the macroscopic and microscopic structures of femoral bone tissue in adult male rats after subchronic peroral administration of Se. Bone is a specialized connective tissue, which forms the framework of the body. Its metabolic activities may be immediate targets for xenobiotics and various physiological conditions can adversely affect bone metabolism leading to skeletal deformities and diseases. Excess or deficiency of certain essential elements may affect bone maturation [1,2]. Selenium (Se), an essential trace element, plays an important role in mammalian biology [3]. It is known that humans and animals require Se for the normal function of a number of Se-dependent biological processes [4,5]. At low concentration (≤ 0.3 mg/L), Se exerts its various

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.