Abstract

BackgroundChronic exposure to cadmium (Cd), even at low concentrations, has an adverse impact on the skeletal system. Histologically, primary and secondary osteons as basic structural elements of compact bone can also be affected by several toxicants leading to changes in bone vascularization and mechanical properties of the bone. The current study was designed to investigate the effect of subchronic peroral exposure to Cd on femoral bone structure including histomorphometry of the osteons in adult male rats.In our study, 20 one-month-old male Wistar rats were randomly divided into two experimental groups. In the first group, young males received a drinking water containing 30 mg of CdCl2/L, for 90 days. Ten one-month-old males without Cd intoxication served as a control group. After 90 days of daily peroral exposure, body weight, femoral weight, femoral length, cortical bone thickness and histological structure of the femora were analysed.ResultsWe found that subchronic peroral application of Cd had no significant effect on body weight, femoral length and cortical bone thickness in adult rats. On the other hand, femoral weight was significantly increased (P < 0.05) in Cd-intoxicated rats. These rats also displayed different microstructure in the middle part of the compact bone where vascular canals expanded into central area of substantia compacta and supplied primary and secondary osteons. Additionally, a few resorption lacunae which are connected with an early stage of osteoporosis were identified in these individuals. Histomorphometrical evaluations showed that all variables (area, perimeter, maximum and minimum diameter) of the primary osteons’ vascular canals, Haversian canals and secondary osteons were significantly decreased (P < 0.05) in the Cd group rats. This fact points to alterations in bone vascularization.ConclusionsSubchronic peroral exposure to Cd significantly influences femoral weight and histological structure of compact bone in adult male rats. It induces an early stage of osteoporosis and causes reduced bone vascularization. Histomorphometrical changes of primary and secondary osteons allow for the conclusion that the bone mechanical properties could be weakened in the Cd group rats. The current study significantly expands the knowledge on damaging action of Cd on the bone.

Highlights

  • Chronic exposure to cadmium (Cd), even at low concentrations, has an adverse impact on the skeletal system

  • Macroscopical differences Body weight, femoral length and cortical bone thickness were unchanged in rats exposed to Cd as compared to the control group

  • We identified a few resorption lacunae near endosteal surfaces which are connected with an early stage of osteoporosis (Figure 2)

Read more

Summary

Introduction

Chronic exposure to cadmium (Cd), even at low concentrations, has an adverse impact on the skeletal system. The current study was designed to investigate the effect of subchronic peroral exposure to Cd on femoral bone structure including histomorphometry of the osteons in adult male rats. 20 one-month-old male Wistar rats were randomly divided into two experimental groups. Cadmium (Cd) is considered as one of the most toxic heavy metals [1] Adverse effects of this non-essential metal are dependent on dose, route of administration, gestational age, species, and animal strain [2]. Galicka et al [12] have reported that receiving of 50 mg Cd/L in drinking water for six months influenced the collagen content and its solubility in the femoral bone of female rats. Any disturbances in collagen metabolism result in the formation of low-quality bone tissue susceptible to deformation and fractures [13]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.