Abstract
Odor information is modulated by centrifugal inputs from other brain regions to the olfactory bulb (OB). Neurons containing monoamines, such as serotonin, acetylcholine, and noradrenaline, are well known as centrifugal inputs; however, the role of histamine, which is also present in the OB, is not well understood. In this study, we examined the histaminergic neurons projecting from the hypothalamus to the OB. We used an antibody against histidine decarboxylase (HDC), a synthesizing enzyme of histamine, to identify histaminergic neurons and assess their localization within the OB and the ultrastructure of their fibers and synapses using multiple immunostaining laser microscopy, ultra-high voltage electron microscopy (EM), and EM to confirm their relationships with other neurons. To further identify the origin nucleus of the histaminergic neurons projecting to the OB, we injected the retrograde tracer FluoroGold and analyzed the pathway to the OB anterogradely. HDC-immunoreactive (-ir) fibers were abundant in the olfactory nerve (ON) layer compared to other monoamines. HDC-ir neurons received asymmetrical synapses from ONs and formed synapses containing pleomorphic vesicles with variable postsynaptic densities to non-ON elements, thus forming serial synapses. We also confirmed that histaminergic neurons project from the rostral ventral tuberomammillary nucleus to the granule cell layer of the OB and, for the first time, successfully visualized their axons from the hypothalamus to the OB. These findings indicate that histamine may regulate odor discrimination in the OB, suggesting a regulatory relationship between hypothalamic function and olfaction. We thus elucidate morphological mechanisms with tuberomammillary nucleus-derived histaminergic neurons involved in olfactory information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.