Abstract
ABSTRACTNiCr matrix WSe2-BaF2·CaF2-Y-hBN and WSe2-BaF2·CaF2-Y powders were prepared by mechanical granulation and crushing, and composite coatings were fabricated by atmospheric plasma spray technology. The microstructures and phase compositions of the powders, as well as the coatings, were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The friction coefficient and the wear behavior of the coatings from ambient temperature to 800°C were evaluated using a ball-on-disk tribometer. From the investigation of the worn surfaces, it was concluded that brittle fracture and delamination were the dominant wear mechanisms of the coatings at low temperature. At higher temperatures, a dense and protective oxide layer (BaCrO4 and NiO) is generated on the worn surfaces of the coatings. Layered hexagonal BN particles reduce the direct contact and severe adhesion between friction pairs. Thus, the friction coefficient of the NiCr-WSe2-BaF2·CaF2-Y-hBN coating is stable at the evaluated temperatures relative to the non-hBN coating. These fluorides exhibit excellent properties in these coatings over a large temperature range.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have